Creating and sharing knowledge for telecommunications

Playing the Smart Grid Game: Performance Analysis of Intelligent Energy Harvesting and Traffic Flow Forecasting for Plug-In Electric Vehicles

Kumar, N. K. ; Misra, S. M. ; Rodrigues, J. R. ; Lee, J. L. ; Obaidat, Mohammad S. Obaidat ; Chilamkurti, N. C.

IEEE Vehicular Technology Magazine Vol. 10, Nº 4, pp. 81 - 92, December, 2015.

ISSN (print): 1556-6072
ISSN (online):

Journal Impact Factor: (in )

Digital Object Identifier: 10.1109/MVT.2015.2481562

Download Full text PDF ( 2 MBs)

Abstract
With an aim to maintain the reliability and transparency of power distribution to consumers, smart grids (SGs) are envisioned to become one of the leading technologies while the usage of plug-in electric vehicles (PEVs) has increased exponentially. However, due to uncertain demands for the usage of resources of SGs, there may be a performance bottleneck at some points in SGs. An intelligent infrastructural support for PEVs is thus required so that the PEVs can perform energy trad- ing from the SG control center. The energy can be generated from various conventional and nonconventional sources. Keeping focus on these points, we present an intelligent energy harvesting and traffic flow forecasting for PEVs in a vehicle-to-grid (V2G) environment. In the proposed game, vehicles are assumed as the players of the game such that learning components are assumed to be deployed on these vehicles having cooperation with intermediate relay nodes. The selection of the relay nodes is completed using a Naive Bayes classifier having input parameters as the current payoff of the players in the game. The payoff value (PV) is given to the players using the link quality and mobility pattern. The proposed scheme is evaluated using metrics such as the probability of data delivery, delay incurred, operational cost, and energy gap. The results confirm the effectiveness of the proposed coalition game in a V2G environment.