Creating and sharing knowledge for telecommunications

Equilibrium Propagation for Complete Directed Neural Networks

Farinha, M. ; Pequito, S. ; Santos, P. S. ; Figueiredo, M. A. T.

Equilibrium Propagation for Complete Directed Neural Networks, Proc European Symp. on Artificial Neural Networks - ESANN , Bruges, Belgium, Vol. , pp. - , October, 2020.

Digital Object Identifier:

Abstract
Artificial neural networks, one of the most successful approaches to supervised learning, were originally inspired by their biological counterparts. However, the most successful learning algorithm for artificial neural networks, backpropagation, is considered biologically implausible.
We contribute to the topic of biologically plausible neuronal learning by building upon and extending the equilibrium propagation learning framework. Specifically, we introduce: a new neuronal dynamics and learning rule for arbitrary network architectures; a sparsity-inducing method able to prune irrelevant connections; a dynamical-systems characterization of
the models, using Lyapunov theory.