Creating and sharing knowledge for telecommunications

Electromagnetic Field in Superconductor Samples Using a Partitioned E-H Finite Element Scheme

Fernandes, J. Fernandes ; Machado, VMM

Journal of Magnetism and Magnetic Materials Vol. 474, Nº -, pp. 448 - 455, March, 2019.

ISSN (print): 0304-8853
ISSN (online):

Journal Impact Factor: 1,283 (in 2008)

Digital Object Identifier: 10.1016/j.jmmm.2018.11.068

Download Full text PDF ( 1 MB)

The need for new numerical methods that can reduce the time computation for non-linear instantaneous field problems is increasing as for example applications for HTS materials become more and more important. This work proposes a novel numerical approach suitable for the simulation of non-linear materials with lower computational times in the simulation of instantaneous field problems in the presence of high temperature superconductors (HTS). The proposed method is based on a partitioned finite element method (FEM) using an E-H electromagnetic scheme formulation (FEM-EHS). The novelty of this method resides in the separation of the matrix formulation due to the discretization of Ampère´s and Faraday´s laws, leaving outside the matrix equations of the non-linear magnetic and electric material properties. Therefore, for a time-dependent simulation, the transformation matrices related to the Ampère´s and Faraday´s laws remain unchanged for the entire time domain, not dependent on the non-linear local Ohm´s law E(J) of the HTS model. Therefore, those matrices can be computed and inverted a priori leading to a fast computation. The method was validated by comparing results with a commercial FEA tool, for the simulation of an HTS bulk magnetization process. With the proposed method, results were obtained in less than 1/3 of the computational time of the commercial tool.